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ABSTRACT

Several mechanistic models are developed to predict recombination coefficients for use in

heat shield design for reusable surface insulation (RSI) on aerobraking vehicles such as

space shuttles. The models are applied over a temperature range of 300 to 1800 K and

a stagnation pressure range of 0 to 3,000 Pa. A four parameter model in temperature

was found to work best, however several models (including those with atom concentrations

at the surface) were also investigated. Mechanistic models developed with atom

concentration terms may be applicable when sufficient data becomes available. This work
_-'-2= I" _ _ -___:'_ -

shows the requirement'for recombination experiments in the 300 to 1000 K and 1500 to

1850 K temperature range, with deliberate concentration variations.

RJW/cv/014 1



INTRODUCTION

The objective was to determine a continuous model for the recombination coefficients of

atoms on space shuttle tiles and similar heat shield materials. This model could then be

applied in heat shield design calculations used in reentry simulations, to help determine

the amount and type of heat shield material required. Currently, the experimental data

shows a maximum recombination rate at around 1600 K, accounted for by discontinuous

recombination models which change at the maximum observed in the data. This work

closely examines two mechanisms to determine if they can predict the observed

recombination data over a wider range of temperatures. These mechanisms also

demonstrate an influence of atom concentration on the recombination coefficients.

The results can be applied in heat shield calculations for the aeroassist flight experiment

(AFE) and aero-orbiter transfer vehicle (AOTV). Higher reentry temperatures are

predicted at the heat shield surfaces. However, current recombination models cannot

predict observed recombination rates at higher temperatures. For instance, a simple

Arrhenius model predicts heating rates two times higher than measured because the

model predicts higher recombination coefficients than those observed. The use of a

continuous model'which reflects actual recombination data across a wider temperature

range, will allow more flexibility in determining the best reentry pattern and heat shield

design for space craft reentry systems.

Figure 1 from Ting et al. (1989) demonstrates the aeroassist flight experiment (AFE)

which is proposed for 1993. This figure portrays how the aeroassist vehicle will travel

through the atmosphere, simulating an aerobraking maneuver while returning to the space

shuttle. It is during this aerobraking maneuver where recombination and heat shield

design become important.

RJW/cv/014 2
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BACKGROUND

General Background

Space shuttle orbiter reentry experiments have shown that catalytic surface recombination

influence heat shield temperatures (Scott, 1985). Specifically, increases up to 111 K have

beert reported for temperatures measured on a catalytically coated space shuttle tile in

contrast to non-catalytically coated space shuttle tiles. The higher temperatures observed

on catalytically coated tiles are explained by increased surface recombination of atoms to

molecules. Further, Rosner & Fang (1974) suggested that recombination is not entirely

to ground state molecules. For instance, molecules created by surface recombination at

one point come off the surface excited, later transferring energy further downside the

space craft surface. To date, mechanistic description of this phenomena has been lacking.

Based on data presently available, a mechanistic model should be able to describe the

maximum in the recombination coefficient as temperature increases. This maximum occurs

around 1600 K based on available data.

Figure 2 demonstrates the reentry chemistry that occurs. As a vehicle reenters the

atmosphere, a bow shock is established off the front nose of the vehicle. As flow goes

across the bow shock, molecules are disassociated into atoms. These atoms then

recombine on the surface, dumping their energy of recombination onto the surface, and

leave the surface as molecules. The ideal surface would have four characteristics: 1) high

emissivity, 2) low recombination rates, 3) the ability to withstand high temperatures, and

4) insulating capabilities to the vehicle itself. This report focuses on the description of

recombination rates of atoms. To demonstrate the amount of energy released during

recombination, it is important to note that the reaction of two oxygen atoms on the

surface will release about 500 k J/mole. This is equivalent to the energy released by the

combustion of coal on a per unit mass basis. Similarly, recombination of nitrogen atoms

releases about two times as much energy on the surface. Therefore, each pound of

RJW/cv/014 4



FIGURE 2

Reentry Flow Field

(from Kolodziej and Stewart, 1987)
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nitrogen atoms which recombine on the surface would be equivalent to burning two

poundsof coal. Spaceshuttle tiles are composedof about 1" thick low density silica called

"high temperature re-usable surface insulation" (HRSI) coated _th ai3out 3 millimeters

thick reaction cured glass (RCG). RCG coating is an excellent non-catalytic surfaceand

is ideal for the purpose of low recombination. However, some recombination continues

to occur and must be accounted for in heat shield calculations.

Currently, recombination is accounted for by recombination coefficients which are the

combination of two components. The first component is the probability that atoms will

recombine when they collide on the surface. The secondcomponent, then, is the fraction

of dissociation energy released to the surface. The recombination coefficients discussed

in this report are thus called energy transfer catalytic recombination coefficients for

nitrogen and oxygen. The ability to separate the probability of recombination from the

fraction of dissociationenergyreleasedhasyet to havebeen accomplishedexperimentally.

However, mechanismscan still be used to describe the data. In general, recombination

data is fitted to an Arrhenius expression:

= k (1)

where k consists of 2 parameters, k o and Ea. The Axrhenius expression becomes:

k = k 0 exp (-Ea/RT) (-la)

where k 0 is called the pre-exponential coefficient and Ea is called the activation energy.

For example, Kolodziej & Stewart (1987) reported the recombination coefficient for

nitrogen and oxygen as shown below. The Arrhenius expression changed at about 1600

K for nitrogen and oxygen, and specifically the activation energy changed from positive to

negative.

"_ _v = 6.1 x 10 .2 exp (-2480/Tw) 1410 <Tw< 1640 (2)

_' ,v = 6.1 x 10 .4 exp (5090/Tw) 1640 <Tw< 1905 (3)

"( o = 40 exp (-11440fI'w) 1435 <Tw< 1580 (4)

_o _ 39 x 10 .9 exp (21410/Tw) 1580 <Tw< 1845 (5)

RJW/cv/014 6



Recombination data taken over a wider range of temperature suggest that a simple

Arrhenius expressionwill not work. For example, look at the recombination coefficient

of nitrogen on silica in Figure 3 (Newman, 1987). Ignoring the wide range of data at 300

K, the figure showsthat from a temperature range of about 300 to 1000K a rather low

activation energy exists (proportional to the negativeslope of the line). As temperature

increasesfrom 1000to about 1400K the activation energy increases. Above 1400K, the

activation energy changesfrom positive to negative and gamma decreases.

The objective of this work is to describe the recombination coefficient over a wider

temperature range with one equation.

Recombination Data Background

Recombination of atoms on

mechanistic modelling study.

(1987); Scott (1981); Stewart

RCG coated HRSI surfaces was the data used in this

The data came from six sources: Kolodziej and Stewart

(oxygen data only) (1982); Witley (summer 1988) and

Marinelli (1986) & (1988). Kolodziej, Scott, Stewart & Willey acquired their data from

arc plasma test facilities. In Kolodziej's work, four RCG coated HRSI models, with a

thickness of 3 mm., were used. The HRSI material was FRCI 20. Temperature

measurements were made with Pt/PT-13% Rh thermocouples and the emissivity was

reported at 0.89. Heating rates were determined by a calorimeter of known catalytic

activity. To predict the recombination coefficient, the heating rate of a known catalytic

reference was measured compared to the heating rate as determined by the Stephan-

Boltzman equation, Q = eCT4w. The calculation method used by Kolodziej and Stewart

(1987), a simulation modeling and analysis of reusable thermal protection package

(SMART), consisted of 3 programs: NOZZL, which calculates properties of a hot gas

expanding through an arc jet nozzle; AMIR which models the inviscid bowshock in front

of the blunt body; and BLIMP which models the non-equilibrium boundary layer with

RJW/cv/014 7
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surface reaction kinetics. These programs generate curves of Q observed/Q fully catalytic

(Q/Qec) as a function of gamma. Gamma is determined by the intersection of the

experimental data with the predicted curves. More details are described in Kolodziej et

al. 1987.

Scott and Willey also used arc plasma facilities to measure recombination coefficients.

Scott (1981) used Pt/Pt-10% Rh thermocouples with the gas compositions of nitrogen and

air; the enthalpies ranged from 20-37 MJ/kg and 5-31 MJ/kg for nitrogen and air

respectively. The model was a flat faced RCG coated HRSI model. Willey (1988) used

conditions similar to Scott with the exception that oxygen compositions were varied from

0, 11, 14 & 21 mole percents. A hemisphere model with a thermocouple located at the

stagnation point of the hemisphere was used. The calculational approach used by both

Scott and Willey is also described in Scott (1981). Flow field properties are determined

by simple flow conservation equations for an inviscid stream tube and the flow is assumed

to be a chemically frozen ideal gas. Q/Qec versus gamma curves are generated and an

experimental gamma is determined from these curves. More details about the

calculational routine used by Scott and Willey is available in Scott (i981).

The work of Marinelli was undertaken in a discharge flow reactor. Atom concentrations

were determined by using laser-induced fluorescence and resonantly enhanced multiphoton

ionization spectroscopy. Gamma was determined by solving the first order kinetic

equations for o_,gen concentration and was proportional to light emitted at 225 nm. More

details about Marinelli experiments can be found in Marinelli, 1988.

RJW/cv/014 9



DATA USED IN THE ANALYSIS

The mechanistic models developed in this work, were fitted to recombination coefficient

data shown in Tables 1 and 2, with the first column representing the source of the data.

Kolodziej and Stewart's data are from their 1987 AIAA paper. The data from Scott were

presented in his 1981 paper. Two points for nitrogen from Scott were deleted from this

analysis because they were off the trend shown by the bulk of his data. The data of

Willey were acquired during the summer faculty fellowship program at NASA-JSC during

the summer of 1988 and was reported in a summer faculty fellowship report. The datum

for Marinelli (1986) for nitrogen atoms was found in a secondary source in a thesis by

Newman, 1987. The second column in Tables 1 & 2 presents the temperature as read

from the figures in the paper or reported. The third column reports the estimated partial

pressure of the atoms at the surface of the RCG coated test article. Partial pressure was

equal to the total stagnation pressure times the atomic mole fraction as reported or

estimated in the various sources. The fourth column demonstrates the recombination

coefficient (gamma) measured or reported. Again, gamma represents the energy transfer

recombination coefficient which is a combination of the probability that atoms will combine

times the fraction of energy released.

Atom concentration is related to the partial pressure by the ideal gas law: [O] = Po/RT.

In the reaction models which follow, the concentration of oxygen was used in place of the

partial pressure of atoms.

Figures 4 and 5 show the log of gamma plotted against 1/T for all data with the exception

of Marinelli's data. The data show the general trend of reaching a maximum at about

1600 K, (1000/T=0.667). Gamma decreases as temperature increases above a temperature

of 1600 K (looking from right to left in the figures).

RJWlcv/014 10



TABLE 1

Raw Data Used in the Estimation of Parameters for Various

Mechanistic Models for the Recombination of Nitrogen Atoms on

RCG Coated HRSI Surfaces

Partial

Temp., Pressure "_N
Source K Nitrogen

Pa

KolodziN &Stewart 1889 2073 0.00894

(1987) 1742 2073 0.00943
" 1686 608 0.01380

" 1603 608 0.01465

" 1467 608 0.01194

" 1422 608 0.01068

Scott (1981) 1668 1010 0.01945
" 1661 840 0.01478

" 1582 721 0.01740

" 1546 751 0.01499

" 1438 461 0.02155

" 1387 521 0.01534

" 1092 170 0.00943

" 1022 128 0.00810

" 1014 120 0.00772

" 996 92 0.00687

Willey (1988) 1536 291 0.01504
" 1524 295 0.01401

" 1506 279 0.01267

" 1496 257 0.01723

" 1493 268 0.01464

" 1490 266 0.01527

" 1460 240 0.01156

" 1412 205 0.01383

" 1411 208 0.01437

" 1402 180 0.01368

" 1350 207 0.01540

Marinelli (1986) 300 133 0.00019

RJW/cv/014 11



TABLE 2

Raw Data Used in the Estimation of Parameters for Various

Mechanistic Models for the Recombination of Oxygen Atoms on

RCG Coated HRSI Surfaces

Partial

Temp Pressure

Source K Oxygen _ O

Pa

Kolodzi_ &Stewart 1831 824 0.00370

(1987) 1806 412 0.01007
" 1742 412 0.01893

" 1726 824 0.00525

" 1644 235 0.01068

" 1617 412 0.00968

" 1592 235 0.03060

" 1450 235 0.01790

Scott (1981) 1647 370 0.02361
" 1493 368 0.01300

" 1419 351 0.00775

Stewart et al. (1982) 1556 451 0.01733
" 1344 406 0.01120

Willey(1988) 1557 241 0.00887
" 1552 134 0.02793

" 1540 252 0.00885

" 1527 253 0.01081

" 1522 127 0.01637

" 1518 241 0.00817

" 1501 237 0.01524

" 1497 239 0.00838

" 1486 230 0.02148

" 1479 128 0.01972

" 1458 225 0.02432

" 1456 124 0.01146

" 1449 231 0.01500

Marinelli (1988) 300 133 0.00020

RJW/cv/014 12



FIGURE 4

Raw Data Used in the Estimation of Parameters fdr

Various Mechanistic Models for the Recombination of

Nitrogen on RCG Coated HSRI Surfaces
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FIGURE 5

Raw Data Used in the Estimation of Parameters for

Various Mechanistic Models for the Recombination of

Oxygen on RCG Coated HSRI Surfaces
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RESULTS AND DISCUSSION

Models Evaluated

Axrhenius Expression

The first model compared to the data was a simple Arrhenius expression given by:

o = 2k (6)

where k is a function of temperature given by:

k = k 0 exp (-Ea/RT) (6a)

and where k o = pre-exponential constant and

Ea = activation energy.

The value of 2 in Equation 6 reflects the stoichiometric requirement that two times the

rate of molecular oxygen production equals the rate of atomic oxygen consumption. This

model demonstrates that chemical reactions contain a barrier between reactants and

products. This barrier is called an activation energy, or Ea. The higher the Ea the more

difficult it is for reactants to go to products at low temperatures. The reaction rate is

much faster at higher temperatures because higher temperatures provide the energy

needed to hurdle the higher barrier. The Arrhenius model is a direct result from a

standard definition of the recombination reaction being first order in oxygen atoms. The

recombination rate is equal to k,,, times the concentration [O].

rate = tq,, [O] (7)

The recombination coefficient is defined as the ratio of the number of atoms recombined,

divided by the number of atoms that strike the surface. The number of atoms which

strike the surface is given by:

N = [O] c/4 = [O] [kBT/2m'_] 1/2 (8)

where c is the average velocity per particle equal [8kBT/m'ff] l/2

and [O] is the number density of atoms, atoms/m s.

RJW/cv/014 15



Dividing Equation 7 by Equation 8 gives the definition of gamma in terms of the first

order wall reaction coefficient, kw.

_= t%,(2m"ll_/kBW)m (8a)

Thus, the constant k in Equation 6 is similar to the constant 1%, in Equation 8a within a

correction factor related to the square root of temperature. Often in chemical kinetics the

square root of temperature relationships are assumed to be constant compared to the

exponential factors in the reaction coefficients. Thus, the recombination coefficient for the

Arrhenius expression assumes that the reaction rate at the surface is first order in oxygen

concentration above the surface/ The Arrhenius expression predicts that when the log

of gamma is plotted against l/T, a straight line will result, whose negative slope is

proportional to the activation energy and whose intercept is related to the preexponential

constant. Reviewing the data in Figures 4 and 5, one sees that, indeed, a portion of the

data can be described by a straight line going from right to left of a negative slope. After

the temperature reaches about 1600 K, however, the Arrhenius expression fails to describe

the data properly. The Arrhenius expression will be referred to as Model 0.

Recombination Models Derived from the Rideal-Eley Mechanism

The Rideal-Eley mechanism is a two-step mechanism. First an atom adsorbs onto a

surface site, then the adsorbed surface atom reacts at the surface with a gas phase atom.

The mechanism is as follows:

O + [S] _t==_ [OS] (9)

O + [OS]---> 02 + [S] (10)

In Equation 9, oxygen atoms are adsorbed onto reduced sites. In Equation 10, oxygen

atoms near the surface combine with oxygen atoms on the surface to form 02, plus

regenerate a reduced site. Several reaction models can be found from this mechanism and

2 For the recombination of nitrogen

whenever oxygen concentration is discussed.

RJW/cv/014 16
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are derived in Appendix A. The simplest model from the Rideal-Eley mechanism,is to

assumethat Equation 9 is in pseudo-equilibrium and that Equation 10 is rate limiting.

Thus, the simplest model that can be derived is as follows:

'_o = 2k2K/(1 + K) (11)

This equation will be referred to as Model 12and, when compared to Model 0, has an

added term related to adsorption (K). This model predicts that at low temperatures,

where adsorption dominates, gamma will be zero order in oxygen atom concentration.

Equation 11 reduces to:

_o = 2k2 (12)

The surface will be essentiallybare above a certain temperature, demonstrating that as

temperature increases,fewer oxygenatoms will stayon the surface. The reaction rate can

then be approximated by:

_'o = 2 k2 K. (13)

The adsorption term, K, consistsof the ratio of the forward divided by the reversed

reaction rate constants in Equation 9. In general, the adsorption equilibrium constant is

described by an Arrhenius behavior as given below:

K = Ka exp (D/RT)

where Ka is the preexponential constant for the

(14)

equilibrium constant and D is the

activation energy i-elated to the adsorption equilibrium constant.

The equilibrium constant has a positive slope on an Arrhenius plot because adsorption is

stronger at lower temperatures. As temperature increases, molecules tend to come off the

surface at a faster rate than they can be absorbed. The overall results observed are

dependent upon the value of D. The combined k2K term can have either a positive or

negative overall activation energy. Therefore, the behavior of the recombination

coefficient at higher temperatures, can increase, stay the same, or decrease in temperature

depending on the value of D compared to Ea.

2 Derivations of Models 1 through 4 are in Appendix A & B.

RJW/cv/014 17



Model 1 assumes that the concentration of oxygen atoms near the surface is constant for

all conditions. Another Rideal-Eley model, Model 2, includes a concentration of oxygen

atoms at the surface and is as follows:

_' o = 2 k2K[O]/(I+K[O])

This model shows that oxygen will influence the recombination rate.

Model 2 reduces to:

' = 2k 2O

and at high temperatures, Model 2 reduces to:

_'o = 2k.,K[O]

(15)

At low temperatures,

(16)

(17)

Therefore, the recombination order will be zero order at low temperatures transitioning

over to first order at high temperatures.

Model 2 effectively displays atom concentrations at the surface proving that recombination

coefficients are a function of atom concentrations near the surface. Unfortunately, there

is not enough data currently available to determine the true functionality of recombination

coefficients with surface concentrations.

An extension of Model 2 includes a temperature correction term which appears in the

derivation of the model:

(2m"_/kBT) '/e

Model 3 will essentially have the same behaviors at the low

extremes as displayed by Model 2. Model 3 is as follows:

o = 2k2 (2m_/knT)lOK[O]/(I+K[O]) 2

(18)

and high temperature

(19)
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A Recombination Model Derived from the Langmuir-Hinshelwood Mechanism

In the Langmuir-Hinshelwood mechanism oxygen atoms adsorb onto the surface to form

a surface oxide species. Next, two neighboring surface oxide species combine to form

molecular oxygen:

O + [S l -_---------_ [OS]

[OS] + [os]---> o2 + 2 [s]

(20)

(21)

Equation 20 represents the adsorption of oxygen onto the surface and is similar to

Equation 9 in the Rideal-Eley mechanism. Equation 21 represents the reaction of two

surface oxide species to form molecular oxygen. The resultant recombination model,

Model 4, is based on the assumption that Equation 20 is in pseudo-equilibrium and that

Equation 21 is the rate limiting step.

_'o = 2k2 (2m'/'/'/kz_T)mK2[O]/( 1 + K[O]) 2

Model 4 demonstrates that at low temperatures,

(22)

where adsorption dominates, the

recombination coefficient is negative first order in oxygen concentration:

o = 2k2 (2m?f/kaT)2/2/[ O] (23)

At high temperatures, where adsorption is negligible, the recombination coefficient is first

order in oxygen:

o = 2 k2(2mff'/kF)mK2[O] (24)

Thus, as temperature increases, a transition occurs from negative first order to positive

first order in oxygen atom concentration at the surface. The available data, however, are

limited and more testing is suggested to verify the possibility of this mechanism. Once

again, the constant, k 2, and equilibrium constant, K, follow Arrhenius relationships as

discussed in the Rideal-Eley mechanism.
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Seward Model

The Seward model was developed in his 1985 thesis and is based around the Rideal-Eley

mechanism using first principle kinetics to describe the adsorption, desorption, and reaction

rate steps separately. This model, Model 5, consists of eight parameters:

o = 2 P No So exp(-Ea/RT)/(SoNo +_ + PNo exp (-Ea/RT)) (25)

The term P represents the steric factor and is related to the ability of oxygen atoms to

absorb. Seward allowed this factor as a function of temperature, up to a certain constant.

The So term is related to the sticking coefficient and predicts the probability that an atom

will adhere once it strikes the surface. Seward also demonstrated this constant as a

function of temperature. The exponential term in the numerator is related to the forward

reaction rate of step 2 in the Rideal-Eley mechanism. The term delta in Seward's

equation is related to the desorption step in Equation 9 of the Rideal-Eley mechanism and

consists of an activation energy and several constants related to the number of surface

sites. Further explanation of the Seward model is presented in Appendix A.

Model 5 has three characteristic temperature ranges: at low temperatures adsorption of

atoms onto the surface dominates, and reduces to:

o = 2P exp (-Ea/RT)

As temperature increases, the forward reaction rate

(26)

of step 2 increases. Thus, the

exponential term dominates in the denominator and the numerator:

o = 2 So (27)

Finally, at high temperatures, the desorption of oxygen atoms dominates and the following

approximation results:

"_o = 2 P NoSO exp (-Ea/RT)/_ (28)

Model 5 predicts zero reaction order at low and medium temperatures in oxygen atom

concentration; at higher temperatures, the model becomes first order in oxygen atom

concentrations. The steric factor and the sticking coefficient in Model 5 are allowed to

be a function of temperatures, and therefore, at lower temperatures the model concaves

upwards. An attractive feature of this model is that it predicts low activation energy for

RJW/cv/014 20



recombination at low temperatures, changingto a higher activation energy at moderate

temperatures. The difficulty in the application of Model 5 is the determination of the

eight parameters (there are too many parameters for the data that is currently available).

Willey Empirical Model

A six parameter empirical model, Model 6, is compared to the data available:

_' o = 2(k2 + k3)K/(t +K) (29)

This model can be thought of as the combination of two mechanistic steps, the rate being

determined by the fastest of the two steps, with each step dependent upon activation

energy. In this work, the rate constant k 3 dominates at low temperatures. At moderate

temperatures the recombination coefficient is described by k 2 and at high temperatures the

recombination coefficient is described by 2k2K

Model 6 can predict a concave upwards curve at low temperatures for the recombination

coefficient as a function of 1/I'. For the recombination of nitrogen atoms on silica, as

shown in Figure 3, the activation energy for the recombination coefficient increases as

temperature increases. Finally, at high temperatures, where desorption dominates, the

overall activation energy goes from negative to positive and therefore the recombination

coefficient declines as temperature further increases. Model 6's parameters can be

adjusted to reflect the behavior shown in Figure 3. Information concerning concentration

dependence on recombination coefficients is lacking and, therefore, a concentration term

is not included in Model 6. A summary of mechanistic models evaluated in this report

is shown in Table 3.
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TABLE 3

Summary Mechanistic Models Evaluated
for Recombination Coefficients for N and 0 Atoms.

Model # Name Model

2

6

Arrhenius _'o = 2 k 2

Rideal-Eley 2 k 2 K

without ConcentrationS'0= .........

Terms (1 + K )

Rideal-Eley 2 k2K [O]
0 = .............

( 1 + K [o])

Rideal-Eley 2 k 2 (2m_/kBT) m K [O]

with a Temperature _ ................

Correction Factor (+ K [O] )

Langmuir-
Hinshelwood

2 k 2 (2m'_/kBT) m K 2 [O]

( 1 + K [o1 )_

Seward 2 P No So exp(-Ea/RT)

(SON° + _ + P N o exp(-Ea/RT))

Willey )( 2 K (k 2 + k3)

v0
(I+K)

Notes:

k 2 is a function of temperature given by: k 2 = k2o exp(-Ea/RT)

k3 is a function of temperature given by: k 3 = kzo exp(-EaJRT)

K is a function of temperature given by: K = Ka exp(D/RT)

[0] is the concentration of oxygen atoms at the surface in atoms/m3;

for nitrogen substitute [N] for [0] in any of the above models

The value of R in these models is 0.0083144 kJ/g mole/I(
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Determination of Constants

For the models presented above, the parameters were determined by non-linear least

squares on the log of gamma. The log of gamma was chosen because it would give equal

weight to lower gammas at lower temperatures. Therefore, the parameters chosen were

those which minimized the sum of squares of error (SSE) defined as: z[ (log _ (i) obs) " log

(_ (i)pred)] 2" All plots presented are log gamma versus 1/T. Model 0 Was simple to

evaluate by linear regression on log gamma versus 1Yf because the slope is proportional

to the activation energy and the intercept is equal to 1/2 of k 2. The parameters for

Models 1-4 were determined by using a non-linear least squares routine, BMDP PAR, for

derivative free non-linear models. Models 1-4, it was discovered, have poorly conditioned

surfaces and the parameter's joint confidence regions have very narrow but broad cigar

shape surfaces (Draper & Smith, 1986). To provide assistance in determination of

constants by non-linear squares, the models were reparameterized as suggested in Draper

& Smith by shifting the rate constant k 2 by the factor of 1000/T-3.333. The preexponential

constant therefore, was centered at 300 K with the determined activation energy being

1/1000 of the true activation energy. For K, 1ff was shifted to 1000/T-0.54, centering Ka

at 1852 K. This resulted in faster converging least squares routines. A limit was also

placed on the maximum value of D, the desorption activation energy, of 574 k J/mole,

preventing arithmetic overflows during the determination of the constants.

The constants for Model 5 were determined using LOTUS 123 with a single parameter

perturbation interactive approach. Each parameter was individually varied to determine

the direction of the sum of squares of error (SSE) on log gamma. Then, depending upon

which parameter reduced the SSE the most, that parameter was corrected and new

parameters were found. The parameters for Model 6 were determined by choosing

activation energy for the low temperature reaction coefficient, k 3. The values used were

640 cal/mole or 2.67 kJ/mote for nitrogen, and 1,000 cal/mole or 4.19 kJ/mole for oxygen

atoms. These numbers are based on data for recombination of atoms on silica as
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presented in Newman's and Seward'stheses (1987, 1985). The remaining parameters in

that model were determined by non-linear least squares.

Application of Models

Table 4 presents the overall summary. The models are compared to the recombination

data for the recombination of nitrogen and oxygen atoms on RCG coated HRSI materials.

The best fits were achieved by Model 1, as demonstrated by the low SSE in Table 4 for

both cases. Willey's Model 6 also closely resembles the data, giving a slightly lower SSE

for nitrogen and slightly higher SSE for oxygen. Figures 6 through 12 and Figures 13

through 19 (beginning on page 32) show a graphical representation for various models

compared to the data used. Figures 6 through 12 illustrate recombination of nitrogen

atoms on RCG coated HRSI surfaces and Figures 13 through 19 illustrate recombination

of oxygen atoms on RCG coated HRSI surfaces. This arrangement portrays the relation

of each model to the data for recombination of nitrogen and oxygen atoms. Figures 20

through 23 are residual plots for the various models evaluated: Figure 20 for the

recombination coefficient for nitrogen as a function of lfI'; Figure 21 for the nitrogen

recombination coefficient versus partial pressure of nitrogen atoms; Figure 22 for the

various recombination models for oxygen atoms as a function of l/T; and Figure 23 for

the various recombination models for oxygen atoms as a function of the partial pressure

of oxygen atoms. These residual plots are helpful in determining the sufficiency and

insufficiency of the various models used by noting trends and making corrections as

needed.

The results from Model 0 are shown in Figures 6 and 13 for nitrogen and oxygen

recombination coefficients respectively. Model 0 predicts a straight line on an Arrhenius

type plot with deviations occurring at higher temperatures. Figures 20-A for nitrogen and

22-A for oxygen show the lack of fit at low 1/T values where the actual data falls below
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TABLE 4

Residual Sum of Squares Summary for Various Recombination Coefficient Models

S.S.EJ for S.S.E. for

Model # Name Nitrogen Oxygen

0 Arrhenius 0.254 1.357

1 Rideal-Eley 0.138 0.938
without Concen-

tration Terms

2 Rideal-Eley 0.150 1.044

3 Rideal-Eley 0.167 1.044

with Temperature
Correction Factor

4 Langmuir- 2.259 1.019
Hinshelwood

5 Seward's 0.206 1.134

6 Willey 0.136 1.021

I Sum of Squares of Errors on log gamma
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that predicted. It is necessaryto create models that would better predict recombination

coefficients at higher temperatures.

The results of Model 1 are shown in Figures 7 and 14 for nitrogen and oxygen atom

recombination coefficients. These figures show a maximum in recombination coefficient

astemperature increases;the maximum occursat about 1600K with a maximum predicted

recombination coefficient of 0.013for nitrogen and of 0.014for oxygen. The residual plots

confirm the suitability of this model. These plots are shown in Figures 20-B, 21-B, 22-

B and 23-B. Figure 23-B shows a slight negative trend, indicating that the model is

deficient in a concentration term.

The results for Model 2 are shown in Figures 8 and 15 for nitrogen and oxygen atom

recombination coefficients,demonstratingthe influence of atom concentration (atom partial

pressure) in terms of the Rideal-Eley mechanism. Figure 8 showspredicted recombination

coefficients for partial pressureof nitrogen atoms at the surfaceof 100,500 and 2,000Pa.

The recombination coefficient has a first-order functionality on partial pressure

(concentration) at higher temperatures;at low temperatures,the three pressurepredictions

combine into a singlecurve on the right hand side of Figures 8 and 15becausethe partial

pressure functionality is zero-order. Thus the Rideal-Eley model predicts a zero-order

concentration functionality at lower temperatures.

Model 2 showswider residual plots (Figures 20-C,21-C, 22-C, 23-C) compared to Model

1, and a negative trend in pressure appears for oxygen atoms (Figure 23-C). Nitrogen

residuals also show a slight negative trend in terms of pressure (Figure 21-C). These

residual plots, as a function of pressure, indicate that the model should be at least one

order less in pressure.

In Model 3, the addition of a temperature concentration term (21V_/kBT)1/2does not

enhance the fit of data. Figures 9 and 16show very similar results to Figures 8 and 15,
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however a slight concave downward appearance occurs in the curves for the low

temperature region between 300 and 1000K. This appearanceoccursbecauseof the Tm

in the numerator of the Model 3. Again, the recombination coefficient is independent of

concentration up to about 1500 K, after which it becomes first-order in concentration. The

first-order influence can be seen in Figure 9 where the curves separate at higher

temperatures for the partial pressures of nitrogen of 100, 500, and 2000 Pa. A further

complication occurs in the determination of the parameters for this model; the upper

boundary of the adsorption activation energy of 574 k J/mole was reached for both oxygen

and nitrogen. As further supporting data becomes available, the maximum can be

increased.

Model 4, the Langmuir-Hinshelwood Model, shows a poor fit for the nitrogen data (Figure

10) and a good fit for the oxygen data (Figure 17). In determining the parameters for

nitrogen atom recombination in Model 4, boundaries were reached in which an arithmetic

overflow occurred during the computational steps. Therefore, the parameters chosen are

at the boundary for Ka and for D. The model essentially looks like a negative first-order

for nitrogen atoms throughout the whole region. In Figure 17, the recombination rate is

higher for lower partial pressures for oxygen atoms with the curves at 100, 400 and 800

Pa falling beneath each other sequentially. The data, which had different pressures

depending upon the researcher, were well described by Model 4 considering the wide

range of variables studied. These results suggest that measurements be taken in the 500

to 1000 K range for oxygen recombination, varying the oxygen concentration at two or

three levels. For instance, experiments could be run in the current arc jet facilities

studying oxygen concentrations of 5%, 10%, and 21%, which would vary the concentration

of atoms at the surface. The Langmuir-Hinshelwood model explains the observation of

higher recombination rates at lower pressures; a maximum in the recombination coefficient

is reached in this model as a function of concentration because the reaction requires two

neighboring sites. This maximum occurs when the surface is about half covered with

adsorbed atoms, when half of the sites are empty and half of the sites are covered. When
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the surface is bare no reaction occurs,becausenothing is on the surface. On the other

extreme, at higher pressures,where the surface is covered, atoms which are near the

surface cannot adsorb but must wait until two atoms combine on the surface and desorb;

therefore, the maximum occurs when the surface is half covered. Although good data is

unavailable to confirm this model, experiments need to be conducted at temperature

regions between 500 and 1000 K with the partial pressure of oxygen purposely varied in

order to determine an influence of recombination coefficient as a function of pressure.

These experiments would provide the evidence required to support a Langmuir-

Hinshelwood recombination model.

The results for Model 5 are shown in Figures 11 and 18 for nitrogen and oxygen atom

recombination coefficients respectively. In Figure 11, as temperature increases, the model

is concave upward. Seward's model achieves this by changing the parameters P and S, and

a maximum gamma is reached at about 1600 K. At temperatures above 1,600 K, gamma

decreases and the functionality is first-order in the partial pressure of atom concentration.

At high temperatures, Model 5 is very similar to the Rideal-Eley mechanism. The residual

plots for Model 5, Figures 20-F, 21-F, 22-F, and 23-F, show good scatter of the data points

around zero.

Model 6, the empirical model, is shown in Figures 12 and 19 for nitrogen and oxygen atom

recombination coefficients respectively. This particular model has no concentration term,

but does predict that the recombination coefficient will increase to a maximum as

temperature increases and then decrease as temperature increases further. Model 6 also

demonstrates concave upward behavior in the low temperature region. This is based on

data from atom recombination on silica type surfaces which are very similar to RCG

coated surfaces. These results suggest that the activation energy at low temperature is

lower compared to activation energy at higher temperatures. Thus, the activation energy

changes with temperature. The observed activation energy is the combination of two

parallel reaction's activation energies; one reaction going faster at low temperature and
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the other speeding up at high temperature. The activation energy chosen for the low

temperature reaction was based on values reported by Newman (1987) and Seward (1985)

for nitrogen and oxygen atoms respectively. They reported the activation energy to be 640

cal/mole for nitrogen atom recombination, and 1000 cal/mole for oxygen atom

recombination on silica surfaces at low temperatures. The residual plots for Model 6,

shown in Figures 20-G, 21-G, 22-G, and 23-G, demonstrate a good fit in all cases, except

for a slight negative trend in terms of pressure for oxygen.

Table 5 presents the parameter estimates for the various recombination models evaluated.

Column 1 represents the model number which corresponds to the model number in Table

3, columns 2 and 3 present the parameter name and its units. Rate constants and

equilibrium constants are composed of two terms: a preexponential constant and an

activation energy. Columns 4 and 5 are the parameter values which give the minimum

sum of squares of errors for the comparison of each model to the data. The confidence

limits for the parameters are not presented because of the poorly conditioned non-linear

surfaces encountered with these models.

In summary, a model independent of concentration describes the available data. The

recombination model can be one of two versions, depending upon future results of low

temperature recombination experiments: if data falls in the lower regions at 500 K

(Figures 12 and 19) Model 6 should be used; if data falls upon a straight line between 300

and 1000 K (Figures 7 and 14) Model 1 is more appropriate. If, in a further work, a

concentration functionality is found important, then data should be compared to Models

2 to 5 (Figures 8 to 11, Figures 15 to 18).
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TABLE 5.

Parameter Estimates for Various Recombination Models Evaluated

Model #

Parameter Parameter Value for Value for

Name .Units Nitrogen Oxygen

k2o Unitless 0.019879 0.017057

Ea k J/mole 13.247 12.585

k2o Unitless 0.021953 0.020155

Ea k J/mole 13.580 13.235

Ka Unitless 1.0647E-07 5.7376E-16

D k J/mole 249.318 520.880

2 k20 unitless 0.021660 0.019763

Ea k J/mole 13.545 13.186

Ka m3/atom 1.2309E-33 8.6919E-40

D k J/mole 359.890 574.340

3 k2o m/sec 9.64640 8.54460

Ea M/mole 15.971 15.705

Ka m3/atom 9.1630E-35 9.7166E-40

D k J/mole 404.250 574.340
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Model #

Parameter

Name

k20

Ea

Ka

D

TABLE 5. Continued

Parameter

Units

atom/m2/sec

M/mole

m3/atom

k J/mole

Value for

Nitrogen

1.5283E+23

14.209

1.9649E-19

574.340

Value fQr

Oxygen

8.1484E+22

12.676

1.8112E-38

574.340

5

6

D

Ea

co

Po

P2

Max P

So1"

$1

k2o

Ea 2

k3o

E%

Ka

D

RJW/cv/014

k J/mole

k J/mole

atoms/m-'

unitless

1/K

unitless

unitless

1/K

unitless

k J/mole

unitless

k J/mole

unitless

k J/mole

353.500

4.593

1.10E+20

2.25E-04

3.12E-03

0.04

3.16E-01

-2.00E-03

3.9885E-02

20.409

2.4275E-04

2.677

2.8098E-08

262.921

31

339.000

4.185

7.94E+ 19

1.79E-04

2.92E-03

0.10

5.01E-0t

-2.00E-03

7.4805E-01

58.861

4.2845E-04

4.189

1.4158E-14

458.036



FIGURE 6

Comparison of Model 0 with the Recombination Coefficients

for Nitrogen Atoms on RCG coated HRSI Materials
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FIGURE 7

Comparison of Model 1 with the Recombination Coefficients

for Nitrogen Atoms on RCG Coated HRSI Materials
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FIGURE 8

Comparison of Model 2 with the Recombination Coefficients

for Nitrogen Atoms on RCG coated HRSI Materials
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FIGURE 9

Comparison of Model 3 with the Recombination Coefficients

for Nitrogen Atoms on RCG Coated HRSI Materials
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FIGURE 10

Comparison of Model 4 with the Recombination Coefficients

for Nitrogen Atoms on RCG Coated HRSI Materials
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FIGURE 11

Comparison of Model 5 with the Recombination Coefficients

for Nitrogen Atorns on RCG Coated HRSI Materials
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FIGURE 12

Comparison of Model 6 with the Recombination Coefficients

for Nitrogen Atoms on RCG Coated HRSI Materials
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FIGURE 13

Comparison of Model 0 with the Recombination Coefficient

for Oxygen Atoms on RCG Coated HRSI Materials
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FIGURE 14

Comparison of Model 1 with the Recombination Coefficient

for Oxygen Atoms on RCG Coated HRSI Materials
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FIGURE 15

Comparison of Model 2 with the Recombination Coefficient

for Oxygen Atoms on RCG Coated HRSI Materials
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FIGURE 16

Comparison of Model 3 with the Recombination Coefficient

for Oxygen Atoms on RCG Coated HRSI Materials
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FIGURE 17

Comparison of Model 4 with the Recombination Coefficient

for Ox'ygen Atoms on RCG Coated HRSI Materials
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FIGURE 18

Comparison of Model 5 with the Recombination Coefficient

for Oxygen Atoms on RCG Coated HRSI Materials
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FIGURE 19

Comparison of Model 6 with the Recombination Coefficient

for Oxygen Atoms on RCGCoated HRSI Materials
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FIGURE 20 A-C

,Residual Plots for Various Recombination Models

for Nitrogen Atoms asa Function of 1/T
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FIGURE 20 G

,Residual Plots for Various Recombination Models

for Nitrogen Atoms asa Function of 1/T
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FIGURE 21 A-C

Residual Plots for Various Recombination Models

for Nitrogen Atoms as a Function of Pressure
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FIGURE 21 G

Residual Plots for Various Recombination Models

for Nitrogen Atoms as a Function of Pressure
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FIGURE 22 A-C

Residual Plots for Various Recombination Models

for Oxygen Atoms as a Function of l/q"
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FIGURE 22 G

• Residual Plots for Various Recombination Models

for Oxygen Atoms as a Function of l/q"
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FIGURE 23 A-C

.Residual Plots for Various Recombination Models

for Oxygen Atoms as a Function of Pressure
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Applications of Models 1 and 6 to Heating Rate Determination for the Aeroassist Flight

Experiment

The application of recombination Models 1 and 6, for the aeroassist flight experiment, to

heating rate design as a function of time for reentry trajectory was computed by Mr. Stan

Bouslog of Lockheed Engineering and Sciences Company. Comparing the predicted

heating rates of Kolodziej and Stewart's (1987) catalytic models, which are discontinuous

as a function of temperature, Models 1 and 6, which are continuous models, present

slightly higher heating rates earily in the reentry pattern. However, Models 1 and 6

predict much lower heating rates when compared to the fully catalytic wail (shown by the

solid curve in both figures). In time, a brief transition occurs where Models 1 and 6

predict a lower heating rate than those predicted by Kolodziej and Stewart due to their

lower recombination coefficient. The peak heating rate in both cases occurs about 110

seconds into the reentry trajectory. The maximum heating rate for Models 1 and 6 is

about 35 BTU/ft2/sec, compared to the maximum heating rate of about 33 BTU/ft2/sec

predicted by Kolodziej and Stewart. Thus, the goal of providing design engineers with a

continuous recombination model for atom recombination on surfaces has been achieved.
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CONCLUSIONS

Recombination models for oxygen and nitrogen atoms on surfaces can be derived from the

Rideal-Eley mechanism which describes observed recombination data on RCG coated

HRSI surfaces. The most appropriate model was dependent in temperature only and

included an adsorption equilibrium term in the numerator and denominater. Normally,

Rideal-Eley rate models for recombination coefficients are zero-order in concentration at

low temperatures, and first-order at high temperatures; however, available data does not

support inclusion of concentration terms into recombination coefficient models. Two

recombination models were applied to stagnation point heating rate simulations and

illustrate similar heating rates to those achieved by catalytic relations discontinuous in

temperature. Parameter estimation in all of the models is difficult, requiring

reparameterization and possible pre-determination of some constants. More experiments

are recommended to verify these conclusions.

RECOMMENDATIONS

More experimental work is recommended in two temperature ranges, 300 to 1000 K and

1500 to 1800 K, regarding atomic recombination rates on RCG coated HRSI materials.

Additional experiments which vary the partial pressure of atoms at the surface are also

necessary. In summary, depending upon the results, one of the four models presented

above can be used. If additional experiments support no concentration dependency, then

Model 1 or Model 6 should be chosen (Model 6 if the apparent activation energy

increases in the temperature range from 300 to 1400 K, Model 1 if the constant activation

energy occurs from 300 to 1400 K). If concentration dependence is found, then Model

2 or Model 4 should be chosen (Model 2 if the recombination coefficient is found to be

zero-order at low temperatures and first-order at high temperatures, Model 4 if the

recombination coefficient is found to be negative first-order and transitions to first-order

as temperature increases).
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LIST OF NOMENCLATURE

AN
c

D

Ea

h

K

ko

k.lo

kl

k2
k3
k2o

kso

Ka

kB

m

N

[N]
No
O

[o]
[os]
P

Po

P2

Pi

Pt
R

IS]
So

So_

$1

So

t

T

Tw

Area normal to flux of atoms, m 2

Average velocity of a gas molecule or atom, m/see

Concentration of surface sites in Seward Model, sites/m 2

Equilibrium activation energy for adsorption, J/atom or kJ/g mole

Activation energy for Rxn.-A-2, J/atom or M/mole

Planck's constant, 6.6256 E-34 N-M see

Equilibrium constant for Reactions A1 & B-l, mS/atom

Arrhenius preexponentiaI constant for Equation la, unitless

Arrhenius preexponential constant for k.lo R.xm. A-1 & B-l, 1/sec

Forward reaction rate constant in Rxns. A-1 & B-l, mS/see site

Forward reaction rate constant in Rxns. A-2 & B-2 mS/sec site

Forward rate constant used in Model 6, unitless

Arrhenius preexponential constant for k 2 in Rxns. A-2 & B-2 mS/sec site

Arrhenius preexponential constant for k3, unitless

Arrhenius preexponential constant for K in Rxns. A1 & B1 mS/atom

Boltzmann Constant, 1.38 E-23 N-m/I( atom

First-order rate constant, m/sec

Mass of an atom, kg/atom

Nitrogen atoms

Concentration of nitrogen atoms, atoms/m s

Surface impingement rate of atoms as given by kinetic theory, atoms/m2sec

Oxygen atoms

Concentration of oxygen atoms, atoms/m s

Concentration of adsorbed oxygen atoms, atoms/m 2

Sterie factor in Eqn. A-19 = Po exp (P2T)

Preexponential factor for P

Exponential factor for P

Partial pressure of gas species i, Pa

Total pressure, Pa

Universal Gas Constant 8,314 kJ/kg mole/K or 0.0008314 kJ/g mole K

Concentration of reduced sites on the surface, atoms/m 2

Concentration of total sites on the surface, atoms/m 2

Preexponential constant in So

Exponential factor in So

Sticking coefficient in Eqn. A-19 = Sol exp (S1T)

time, s

Temperature at surface, K

Temperature at the tile surface, K

delta, thermal desorption coefficient in Eqn. A-19

gamma, recombination coefficient
Stefan-Boltzmann constant
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APPENDIX A

Derivation of Rideal-Eles Mechanistic Models

The basic rate equations are:

Adsorption of oxygen onto the surface:

kl

0 + [S]_ [OS]

k_l

Reaction of a surface oxygen with a gas phase oxygen:

k2

Og + [OS]---> 0 2 + [S]

A-1

A-2

Where [S] is the concentration of "reduced" surface sites, sites/m 2

and where [OS] is the concentration of "oxidized" surface sites, atoms/m-'.

Based on the law of mass action, the rate of 0 2 production per unit area is proportional

to the concentration of oxygen in the gas phase times the concentration of oxide sites:

d O2/ANdt = k 2 [O] [OS] A-3

where [O] is in atoms/m 3 and k 2 has the units m3/sec atom.

At steady state the rate of surface oxide, [OS], site formation has to equal zero:

d[OS]/ANdt -- 0 = k 1 [O][S]-k.l[OSl-k2[O][OS] a-4

If the number of total surface sites are constant then

[S0l=[S]+ [os] A-5
or

[S] -- [So]-[OS ] A-6

Substitution of Equation A-6 into Equation A-4 leads to the following equation:

d[OS]/AN dt =0=kl[O][S0].k_[O][OS]-k.l[OS]-k2[O][OS ] A-7

[OS] can be factored and a solution found for [OS] in terms of rate constants, gas phase

concentration, and catalyst site concentration results.
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[OS] = kz[O][So]/(kl[O]+k.l+k2[Ol) A-8

Substitution of Equation A-8 into Equation A-3 leads to:

dOffA N dt= klk2[O]2[Sol/(kl [O] + k. 1+k2[O]) A-9

Gamma 0,_ o , is defined as the number of atoms reacting on the surface divided by the

number of atoms which strike the surface:

o =-dO/AN dt/No

By reaction stoichiometry:

0+0 _ 0 2

2

or in terms or rates,

-1/2 dO/dt = dO_/dt

or

dO/dt = -2 dO,/dt

Substitution of Equation A-13 into Equation A-10 results in:

o = 2 dOffAN dt/N o

or

_'o = 2 klk2[O]2[S0]/(kl[O]+k.l+k2[O])/No

From the kinetic theory of gases

No= [O]c/4 = [O][k_T/2m_ ]1/2

where

and

c is the average velocity per particle = [8keT/m'_ m

[O] is the number density of atoms, atoms/m 3

Substitution of Equation A-16 into Equation A-15 results in the following:

_o = 2klk2[ O ][So] [2m"g'/kBT] m/(kl[ O ] + k 4 + k2[ O ])

A-10

A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18
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Discussion: Equation A-18 is analogous to recombination models derived by Seward (1985)

for oxygen recombination and Newman (1987) for nitrogen recombination.

Seward's model is as follows:

"_ o=2PNoSo exp(-Ea/ksT)/(NoSo-I-_+PNoexp(-Ea/kBT ) A-19

By factoring [O] in Equation A-18 and N O in Equation A-19 the equations can be

compared.

"_ o-- 2kl k2[S°] (2m/kBT)m/(kl + k 1/[O] + k2) A-20

and

"_ o=2 P So exp (-Ea/k_T)/(So +S/N o + exp (-Ea/kBT)) A-21

Thus the adsorption term in Equation A-1 is equivalent to So

k I = So A-22

likewise

and

k-1/[O] = _/No A-23

k, = P exp (-E/kBT)

In conventional kinetics, each rate constant, ki, can be described by

expression:

ki=kio exp (-Ei/k_T)

A-24

an Arrhenius

A-25

placing the ArrheniusA comparison of Equation A-20 and A-21 can be made by

definitions on the !eft hand side of equations A-22, A-23 and A-24 and the definitions

given in Seward (1985) and Newman (1987) for the terms on the right hand side. Thus,

kl0 exp (-EffkBT) = Sol exp (-0.002 T) A-26

The left hand side predicts that will increase with temperature while the right hand side

predicts that will decrease slightly with temperature. This is the major difference
between the two models.
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k.loexp (-D/knT)/[O]=Ca(kBT/h)exp(-D/kBT)/N o A-27

or

k.10/[O]= C,_(kBT/h)/[O](kBT/2rn_ m A-28

or

k.10=Ca (kBT2m'/f)m/h

Equal within a constant with a small influence of temperature

and

k2o exp (-Ea/k_T)= P exp (-Ea/kBT)

A-29

A-30

or

k20=P

In Seward's work P is a function of temperature Po exp (P2T) until P exceeds 0.1 where

it is set equal to 0.1. Therefore, k2o is within a constant factor of P at higher

temperatures.

Simplification of Equation A-18

Often the temperature term [2m'_kDT] m is assumed approximately constant in the

temperature range of interest as compared to the exponential terms, and is combined with

a preexponential constant in the Arrhenius equation. If the rate of reaction A-2 is rate

limiting, k_,[O] is much lower compared to k. 1 and k_[O] in the denominator and the term

is dropped. Dividing top and bottom by k. 1, one gets the classical Rideal-Eley mechanism

with Equation A-2 as the rate limiting step.

o=2k2K[O]/(1 +K[O]) A-31

where K is the equilibrium constant for Reaction A-1.
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Another assumptionassumesthat oxygenatom density is approximately constantnear the
surface and oxygen atom density can, therefore, be combined with the preexponential
constantsof the Arrhenius equation:

'_ o=2k2K,/(l+K) A-32

This is the simplest 4 parameter model possible.

where k 2 = k2o exp (-Ea/kBT) A-33

and K = Ka exp (D/KF). A-34

Note: In the report, R, the universal gas constant, is used in place of k B.
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APPENDIX B

Derivation of a Langmuir Hinshelwood Mechanistic Model

The basic rate equations are:

Adsorption of oxygen onto the surface

kl

O + [S]_ [OS] B-1

k. 1

Reaction of 2 surface oxygens to form molecular oxygen

[OS] + [OS]---> 0 2 + 2[S] B-2

In this derivation Reaction, B-1 is assumed in pseudo-equilibrium and Reaction B-2 is rate

limiting, thus:

d O2/ANdt = k2[OS] 2 B-3

and

kl[O][S] =k.l[OS]

If the number of total surface sites are constant, then:

[So]=[Sl+[OSl

or

B-4

B-5

[S]= [So]_[OS] B-6

Substitution of Equation B-6 into Equation B-4 leads to the following equation:

kl[O][So] =k.l[OS] +kl[O][OS] B-7

or solving for lOS],

[OS]= kl [O][So]/(k.1 +kl [O1) B-8
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Multiply top and bottom by k.1and define K to be the equilibrium constant, Equation B-
8 becomes:

lOS]=K[O][S0]/(1+K[O]) B-9

Substitution of Equation B-9 into Equation B-3 leads to:

dO2/ANdt=k2K2[O]2/(1+ K[O])2 B-10

From Appendix A above,

2 dO2/dt=-dO/dt B-11

and

thus,

N O= [O] [kaT/2m_ 1/2

'_o=2 k2[2m'il"/k_T]H2K2[O]/(1 + K[O])-"

B-12

B-13

The rate constant, k 2 and equilibrium constant, K, follow Arrhenius equations.

k2=k20 exp (-Ea/kz_T) B-14

K=Ka exp (D/kBT) B-15
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Data Base Used in the Study

APPENDIX C
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